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APPLICATION OF THE VARIATIONAL PRINCIPLE TO THE SOLUTION OF 

GENERALIZED COUPLED PROBLEMS IN THERMOELASTICITY OF INHOMOGENEOUS 

MEDIA 

Yu. M. Kolyano and Z. I. Shier UDC 539.3 

A variational principle is formulated for coupled thermoelasticity for inhomo- 
geneous media. The problem of thermoelastic energy dissipation accompanying trans- 
verse oscillations of an inhomogeneous isotropic cantilevered beam is solved. 

The application of direct methods to the solution of coupled problems in thermoelasticity 
for inhomogeneous media encounters considerable mathematical difficulties. The development 
of approximate methods for solving coupled problems based on variational principles is prom- 
ising. 

We shall formulate the variational principle for coupled thermoelasticity for inhomogen- 
eous media. We shall examine the isothermal energy of deformation 

1 .I cuk~(x~) ekdudV, = (i) 
2 

where ~ is the volume of the body. 

Let us transform (i) taking into account the Duhamel--Neumann equation for inhomogeneous 
media and the equations of motion. As a result, we obtain 

S Xi6u,dV+ ] Pi6u,dA-- ~ p{x, )~6uidV=6W-- ~.~o(x,)t6ei,dV. (2) 
A ~ 

where  A i s  t he  s u r f a c e  o f  t h e  b o d y .  

We introduce the vector H, related to the heat flux vector by the relation 

Taking into account the generalized law of heat conduction 

lq, = -- )~i (x.) t, i (4) 
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and r e l a t i o n  ( 3 ) .  we f i n d  

t,i = - -  tokij (x~) IHj, (5) 

where kij(Xs) is the inverse matrix for the coefficients of thermal conductivity l~j (Xs) ; Z = 
[I + Tr(8/3T)] ; T r is the relaxation time for the heat flux. 

Multiplying (5) by 6H i, integrating over fl, and using the equation for the rate of growth 
of entropy 

i.e., 

we obtain the equation 

toS = -- div q = cr (x~) i q- [3ij (x~) toe,s, 

Hi,i -- c~(xA i +  f~ii(x4 eij, 
to 

1 f~iflSeijdV,, if- to O. 

A ~ o f~ 

(6) 

Eliminating from Eqs. (2) and (6) terms that contain variations of deformations, we arrive at 
a variational equation for the generalized coupled problem of thermoelasticity of anisotropic 
inhomogeneous bodies 

where 

5 (W q- P q- D) = f (Xi --  p (&) ui) 5uidV q- f P~SuidA --  .I tSH~dA, 
D- A A 

(7) 

1 f cr tadV; 6H~=ni6H~; P =  2to 
fl 

6D = to ; kij (xs) 6HdffjdV. 

Thus, variation of the sum of the work of deformation, the thermal potential, and the 
dissipation function equals the virtual work of external forces, inerial forces, and heating 
of the surface. 

Let us represent the components of the displacement vector u i and the components of the 
vector H i as follows: 

~ 2 Ui= ~ Uij(xs) qifT), H i - -  Hii(Xs) qj(T), (s) 
/ = l  /=I 

where qj are generalized coordinates. We assume that ~u i and 6Hi'do not depend on time. 
Then, defining 

5u~ = Ou~ 5qs, 5Hi = ___OHi 5qj, OHi = OI:Ii 
Oqj Oq~ Oqj O[lj ' 

~ K =  dT 

we shall represent (7) in the form of the Lagrangian equations of motion 

O(U7 q- p) + c3DT , d (OK ODT I 
Oqj oq-'-/T + = Oqj / 

where 

(9) 

DT -- t~ .f kiy (x~) [t2dV; 
o 

(lO) 
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Q~= ; X i  Ou~ d V q - j '  (p~OU~ - - t~  OH~ dA 
Oqj Oqj ~qj , 

A 

is the generalized force. 

We shall use the variational principle (9) to solve the problem of thermoelastic energy 
dissipation accompanying transverse oscillations of an inhomogeneous isotropic cantilevered 
beam. Assume that the beam with a rectangular transverse cross section has height h, width 
b, and length Z. The axis of the beam is directed along the OX axis and the origin of co- 
ordinates is located at the fixed end of the beam. Based on the elementary theory of bending 
of a beam, we have 

dZuz �9 ~ = ~ = --~(x~) <~; ~.~u = ~y= = e~x -- O; ~k -- e~ ~- % -I- ~ = --z [I --2v(x~)] d2u~ 
e~ = - -  z dx z , dx 2 , (ii) 

where V(Xs) is the Poisson coefficient of an inhomogeneous beam; u z is the deflection. We 
shall assume that the change in deflection of the beam has the following form: 

u z = q i  1 - - c o s - -  , 
21 

where qx is the deflection of the free end of the beam and is a generalized coordinate. We 
assume that the entropy density varies similarly to the deflection, i.e., 

S 2q.,z ax -- cos -- ~ (13) 
h 2l 

where qa is the generalized coordinate for entropy. 

where 

Let us calculate (W + P), K, and D T taking into account 

1 1 
l've" + P - -  2 a,aq~ @ a~zqaq,. + ~ a2zq~, 

O 1 "2 = b22q2 , 
2 

(11), (12), 

1 m 2 
K = T -ql,  

and (13): 

(14) 

all = ; 
fl 

m j l =  9(&) 1 - - c o s - -  dV; 
21 

Jl 2 2~X )2 [ 
- -  cos -- k (&) + zZ [ 1 - -  2v (&)l z 147 41 z 2l 

to ~ (x~)] dV; 

a~e-- -~-  zZ?(x~) [1-- 2v(&)l cos ~ [  - 1 4 - - -  
4t ~ .q 

4to ,I' z--~" ax 
ao.~ = - ~ -  ce(x,) c~ 2l dV; 

. . . .  z ~ cos 2 -- dV. 
O"" - ~  ~ 4 2t 

f~ 

cos -- dV; 
2l 

Substituting the values (15)-(19) into (9), taking into account the fact that Qj = O, we 
obtain the following system of differential equations: 

mttqt + a ,q i  + aioq.,. = O, 

%b2221~z + b~.z[bz 4;- a.,..,_q,_ + alzql = O. 

We shall assume that the beam undergoes harmonic oscillations when 

q~ = exp (i~'0, //z = io~q2, q2 = - -  ~2q2. 

(15) 

(16) 

(17) 

(!s) 

(19) 

(20) 

(21) 

(22) 
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Transforming (20) and (21), taking into account 

k 

(a.z2 %o)2b22) a12  

(a,z2 -- "~ro)~b~) z + b'~ ~ 

(22), we obtain 

(a2~ - -  ~o~b22)  2 + 0~2 o2 

el2 (a2~. - -  TrO)2622) 
M = all -- (a~ - -  "r~o2b.,.2) 2 + b2zr z 

is the modulus of rigidity of an inhomogeneous beam, while 

F d = a~2 b-,2(o 
(co.2 -- T~(o2b.2~) ~ + b~-.o) ~ 

is the equivalent damping force, which vanishes for ~ = 0 and ~ "+ '~ .  

in the following form 

mtiqi @ qi (M @ iF d)  = O. 

Let us denote the damping coefficient in terms of B: 

V = VM~ + ~ + M 
2rn~t 

then, 

,,. 

' 2rail 

qi = exp ( - -  ~i:) cos ~ .  

= 0 ,  (23) 

(24)  

(25) 

We shall represent (23)  

(26) 

For a frequency of oscillations ~ = /aaaa/bsaT r, the modulus of rigidity attains the 
maximum value equal to a**. Let us determine 8 for different values of the frequency of 

oscillation: 

V /  ~12 a t  t - -  - -  /r 

roll /7"/11 

while if m = mcr, then 

. . 1 -~- ao~ all 

2/7~1i 

For ~ = mcr, the damping coefficient takes on the greatest value. Let us examine how the 
changes in the thermophysical characteristics of the beam affect the energy dissipation. 

i. Let the thermophysical characteristics vary according to the law 

where p o and n are given parameters. 

h 3 1 + 32 ] 
a l  t ( k  0 ! § , ,3 c - - l ' l  = -F- ~Oi' 0 eo ! 

P (V) = Po exp (ny), 

In this case, we obtain: 

(27) 

2. 

p (y)  = po + (p~ - -  po) s _  (y),  

(28) 

(29) 

(30) 

(exp (rib) - -  1) - -  2Vo (exp ( 2 n b ) - -  1) @ ~ v o (exp (3rib)-- 1) , (31)  
n 

2v~176 (4/2 -}- 23) [exp (nb) (1 % exp (nb) 1 Vo)], ( 32 )  
3Mn  

c@~ = 4loth (3% n)-'  (1 - -  exp (- -  nb)), . (33)  

m .  = n-ipolh (exp (nb) - -  1) ( - ~ -  + - ~ - )  , (34) 3 
l 

4 
l 

b22 = tolh (I -- exp (-- nb)) (8)/0 n)-t (35) 
Let the thermophysical characteristics vary according to the law 

(36)  
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where S_(y) is the asymmetric unit function. Then 

x 

a,,--  31 lh3b 1 +  - ~ f - } - ~ - ) ] - ~ -  (1 +4Vo) k,--ko-}-to c~, c~. "< 

- c~, -k 2 [(v~ -- v~) k~ + to?~ c~'] + (1 + 4v 2) ko + c~---~])' 
(37) 

al~ =zx(1 + n )  toh2b [1--2%?o(1+ "~oVi _~_ vo'Vi ) -  4vt?i] (3/)-q (38) 

a2~ " = - -  + , (39) 
3 Ceo Ce~ 

mll----(--3) IZhb (Poq-Pl) , (40) 

b~z-- blhto 1 +.  2 

Comparison of expressions (31)-(35) and (37)-(41) shows that the nature of the inhomogeneity 
of the material has a large effect on the magnitude of the energy dissipated with oscillations 
of the beam. 

Thus, it follows from what was said above that with the help of the given variational of 
principle, it is possible to determine the magnitude and characteristics of the thermoelastic 
energy dissipation with oscillations of inhomogeneous bodies. 

NOTATION 

Xs(S = i, 2, 3), rectilinear Cartesian coordinates; x, time; k~j (i, j = l, 2, 3), coef- 
ficients of thermal conductivity of an anlsotroplc body; to, temperature of the body in an 
unstressed state; t, increase in temperature at points in the body; S, entropy; eij, compon- 
ents of the deformation in Cartesian numbered axes; ciJkl, elastic coefficients of inhomogen- 
eous anisotropic bodies; 8iJ, coefficients of an inhomogeneous anisotropic body, taking into 
account the mechanical and thermal properties of the materlal;ce, volume heat capacity at 
constant deformation; p, density of the inhomogeneous anlsotroplc body; Xi, components of the 
vector of mass forces; Pi, components of the vector of surface forces; k, I = i, 2, 3. 
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